Ячмень        17.02.2024   

Как вычислить относительную погрешность измерения g. Абсолютная и относительная погрешность вычислений

Ни одно измерение не свободно от погрешностей, или, точнее, вероятность измерения без погрешностей приближается к нулю. Род и причины погрешностей весьма разнообразны и на них влияют многие факторы (рис.1.2).

Общая характеристика влияющих факторов может быть систематизирована с различных точек зрения, например, по влиянию перечисленных факторов (рис.1.2).

По результатам измерения погрешности можно разделить на три вида: систематические, случайные и промахи.

Систематические погрешности, в свою очередь, делят на группы по причине их возникновения и характеру проявления. Они могут быть устранены различными способами, например, введением поправок.

рис. 1.2

Случайные погрешности вызываются сложной совокупностью изменяющихся факторов, обычно неизвестных и трудно поддающихся анализу. Их влияние на результат измерения можно уменьшить, например, путем многократных измерений с дальнейшей статистической обработкой полученных результатов методом теории вероятностей.

К промахам относятся грубые погрешности, которые возникают при внезапных изменениях условия эксперимента. Эти погрешности по своей природе тоже случайны, и после выявления должны быть исключены.

Точность измерений оценивается погрешностями измерений, которые подразделяются по природе возникновения на инструментальную и методическую и по методу вычислений на абсолютную, относительную и приведенную.

Инструментальная погрешность характеризуется классом точности измерительного прибора, который приведен в его паспорте в виде нормируемых основной и дополнительных погрешностей.

Методическая погрешность обусловлена несовершенством методов и средств измерений.

Абсолютная погрешность есть разность между измеренным G u и истинным G значениями величины, определяемая по формуле:

Δ=ΔG=G u -G

Заметим, что величина имеет размерность измеряемой величины.

Относительную погрешность находят из равенства

δ=±ΔG/G u ·100%

Приведенную погрешность рассчитывают по формуле (класс точности измерительного прибора)

δ=±ΔG/G норм ·100%

где G норм – нормирующее значение измеряемой величины. Ее принимают равной:

а) конечному значению шкалы прибора, если нулевая отметка находится на краю или вне шкалы;

б) сумме конечных значений шкалы без учета знаков, если нулевая отметка расположена внутри шкалы;

в) длине шкалы, если шкала неравномерная.

Класс точности прибора устанавливается при его проверке и является нормируемой погрешностью, вычисляемой по формулам

γ=±ΔG/G норм ·100%, если ΔG m =const

где ΔG m – наибольшая возможная абсолютная погрешность прибора;

G k – конечное значение предела измерения прибора; с и d – коэффициенты, учитывающие конструктивные параметры и свойства измерительного механизма прибора.

Например, для вольтметра с постоянной относительной погрешностью имеет место равенство

δ m =±c

Относительная и приведенная погрешности связаны следующими зависимостями:

а) для любого значения приведенной погрешности

δ=±γ·G норм /G u

б) для наибольшей приведенной погрешности

δ=±γ m ·G норм /G u

Из этих соотношений следует, что при измерениях, например вольтметром, в цепи при одном и том же значении напряжения относительная погрешность тем больше, чем меньше измеряемое напряжение. И если этот вольтметр выбран неправильно, то относительная погрешность может быть соизмерима со значением G н , что является недопустимым. Заметим, что в соответствии с терминологией решаемых задач, например, при измерении напряжения G = U , при измерении тока C = I , буквенные обозначения в формулах для вычисления погрешностей необходимо заменять на соответствующие символы.

Пример 1.1. Вольтметром, имеющим значения γ m = 1,0 % , U н = G норм, G k = 450 В , измеряют напряжение U u , равное 10 В. Оценим погрешности измерений.

Решение.

Ответ. Погрешность измерений составляет 45 %. При такой погрешности измеренное напряжение нельзя считать достоверным.

При ограниченных возможностях выбора прибора (вольтметра), методическая погрешность может быть учтена поправкой, вычисленной по формуле

Пример 1.2. Вычислить абсолютную погрешность вольтметра В7-26 при измерениях напряжения в цепи постоянного тока. Класс точности вольтметра задан максимально приведенной погрешностью γ m =±2,5 % . Используемый в работе предел шкалы вольтметра U норм =30 В.

Решение. Абсолютная погрешность вычисляется по известным формулам:

(так как приведенная погрешность, по определению, выражается формулой , то отсюда можно найти и абсолютную погрешность:

Ответ. ΔU = ±0,75 В .

Важными этапами в процессе измерений являются обработка результатов и правила округления. Теория приближенных вычислений позволяет, зная степень точности данных, оценить степень точности результатов еще до выполнения действий: отобрать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата, но не слишком большую, чтобы избавить вычислителя от бесполезных расчетов; рационализировать сам процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точные цифры результаты.

При обработке результатов применяют правила округления.

  • Правило 1. Если первая из отбрасываемых цифр больше пяти, то последняя из сохраняемых цифр увеличивается на единицу.
  • Правило 2. Если первая из отбрасываемых цифр меньше пяти, то увеличение не делается.
  • Правило 3. Если отбрасываемая цифра равняется пяти, а за ней нет значащих цифр, то округление производится на ближайшее четное число, т.е. последняя сохраняемая цифра остается неизменной, если она четная, и увеличивается, если она не четная.

Если за цифрой пять есть значащие цифры, то округление производится по правилу 2.

Применяя правило 3 к округлению одного числа, мы не увеличиваем точность округления. Но при многочисленных округлениях избыточные числа будут встречаться примерно столь же часто, как недостаточно. Взаимная компенсация погрешности обеспечит наибольшую точность результата.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной погрешностью.

Величина предельной погрешности не является вполне определенной. Для каждого приближенного числа должна быть известна его предельная погрешность (абсолютная или относительная).

Когда она прямо не указана, то подразумевается, что предельная абсолютная погрешность составляет половину единицы последнего выписанного разряда. Так, если приведено приближенное число 4,78 без указания предельной погрешности, то подразумевается, что предельная абсолютная погрешность составляет 0,005. Вследствие этого соглашения всегда можно обойтись без указания предельной погрешности числа, округленного по правилам 1-3, т.е., если приближенное число обозначить буквой α , то

Где Δn – предельная абсолютная погрешность; а δ n – предельная относительная погрешность.

Кроме того, при обработке результатов используются правила нахождения погрешности суммы, разности, произведения и частного.

  • Правило 1. Предельная абсолютная погрешность суммы равна сумме предельных абсолютных погрешностей отдельных слагаемых, но при значительном числе погрешностей слагаемых обычно происходит взаимная компенсация погрешностей, поэтому истинная погрешность суммы лишь в исключительных случаях совпадает с предельной погрешностью или близка к ней.
  • Правило 2. Предельная абсолютная погрешность разности равна сумме предельных абсолютных погрешностей уменьшаемого или вычитаемого.

Предельную относительную погрешность легко найти, вычислив предельную абсолютную погрешность.

  • Правило 3. Предельная относительная погрешность суммы (но не разности) лежит между наименьшей и наибольшей из относительных погрешностей слагаемых.

Если все слагаемые имеют одну и ту же предельную относительную погрешность, то и сумма имеет ту же предельную относительную погрешность. Иными словами, в этом случае точность суммы (в процентном выражении) не уступает точности слагаемых.

В противоположность сумме разность приближенных чисел может быть менее точной, чем уменьшаемое и вычитаемое. Потеря точности особенно велика в том случае, когда уменьшаемое и вычитаемое мало отличаются друг от друга.

  • Правило 4. Предельная относительная погрешность произведения приближенно равна сумме предельных относительных погрешностей сомножителей: δ=δ 1 +δ 2 , или, точнее, δ=δ 1 +δ 2 +δ 1 δ 2 где δ – относительная погрешность произведения, δ 1 δ 2 - относительные погрешности сомножителей.

Примечания :

1. Если перемножаются приближенные числа с одним и тем же количеством значащих цифр, то в произведении следует сохранить столько же значащих цифр. Последняя из сохраняемых цифр будет не вполне надежна.

2. Если некоторые сомножители имеют больше значащих цифр, чем другие, то до умножения следует первые округлить, сохранив в них столько цифр, сколько имеет наименее точный сомножитель или еще одну (в качестве запасной), дальнейшие цифры сохранять бесполезно.

3. Если требуется, чтобы произведение двух чисел имело заранее данное число вполне надежное, то в каждом из сомножителей число точных цифр (полученное измерением или вычислением) должно быть на единицу больше. Если количество сомножителей больше двух и меньше десяти, то в каждом из сомножителей число точных цифр для полной гарантии должно быть на две единицы больше, чем требуемое число точных цифр. Практически же вполне достаточно взять лишь одну лишнюю цифру.

  • Правило 5. Предельная относительная погрешность частного приближенно равна сумме предельных относительных погрешностей делимого и делителя. Точная величина предельной относительной погрешности всегда превышает приближенную. Процент превышения примерно равен предельно относительной погрешности делителя.

Пример 1.3. Найти предельную абсолютную погрешность частного 2,81: 0,571.

Решение. Предельная относительная погрешность делимого есть 0,005:2,81=0,2%; делителя – 0,005:0,571=0,1%; частного – 0,2% + 0,1%=0,3%. Предельная абсолютная погрешность частного приближенно составит 2,81:0,571·0,0030=0,015

Значит, в частном 2,81:0,571=4,92 уже третья значащая цифра не надежна.

Ответ. 0,015.

Пример 1.4. Вычислить относительную погрешность показаний вольтметра, включенного по схеме (рис. 1.3), которая получается, если предположить, что вольтметр имеет бесконечно большое сопротивление и не вносит искажений в измеряемую цепь. Классифицировать погрешность измерения для этой задачи.

рис. 1.3

Решение. Обозначим показания реального вольтметра через И, а вольтметра с бесконечно большим сопротивлениемчерез И ∞ . Искомая относительная погрешность

Заметим, что

тогда получим

Так как R И >>R и R > r, то дробь в знаменателе последнего равенства много меньше единицы. Поэтому можно воспользоваться приближенной формулой , справедливой при λ≤1 для любого α . Предположив, что в этой формуле α = -1 и λ= rR (r+R) -1 R И -1 , получим δ ≈ rR/(r+R) R И .

Чем больше сопротивление вольтметра по сравнению с внешним сопротивлением цепи, тем меньше погрешность. Но условие R<

Ответ. Погрешность систематическая методическая.

Пример 1.5. В цепь постоянного тока (рис.1.4) включены приборы: А – амперметр типа М 330 класса точности К А = 1,5 с пределом измерения I k = 20 А; А 1 – амперметр типа М 366 класса точности К А1 = 1,0 с пределом измерения I к1 = 7,5 А. Найти наибольшую возможную относительную погрешность измерения тока I 2 и возможные пределы его действительного значения, если приборы показали, что I=8,0А. и I 1 = 6,0А. Классифицировать измерение.

рис. 1.4

Решение. Определяем ток I 2 по показаниям прибора (без учета их погрешностей): I 2 =I-I 1 =8,0-6,0=2,0 А.

Найдем модули абсолютных погрешностей амперметров А и А 1

Для А имеем равенство для амперметра

Найдем сумму модулей абсолютных погрешностей:

Следовательно, наибольшая возможная и той же величины, выраженная в долях этой величины, равна 1 . 10 3 – для одного прибора; 2·10 3 – для другого прибора. Какой из этих приборов будет наиболее точным?

Решение. Точность прибора характеризуется значением, обратным погрешности (чем точнее прибор, тем меньше погрешность), т.е. для первого прибора это составит 1/(1 . 10 3) = 1000, для второго – 1/(2 . 10 3) = 500. Заметим, что 1000 > 500. Следовательно, первый прибор точнее второго в два раза.

К аналогичному выводу можно прийти, проверив соответствие погрешностей: 2 . 10 3 / 1 . 10 3 = 2.

Ответ. Первый прибор в два раза точнее второго.

Пример 1.6. Найти сумму приближенных замеров прибора. Найти количество верных знаков: 0,0909 + 0,0833 + 0,0769 + 0.0714 + 0,0667 + 0.0625 + 0,0588+ 0,0556 + 0,0526.

Решение. Сложив все результаты замеров, получим 0,6187. Предельная наибольшая погрешность суммы 0,00005·9=0,00045. Значит, в последнем четвертом знаке суммы возможна ошибка до 5 единиц. Поэтому округляем сумму до третьего знака, т.е. тысячных, получаем 0,619 – результат, в котором все знаки верные.

Ответ. 0,619. Количество верных знаков – три знака после запятой.

Допустим, что мы проводим серию из n измерений одной и той же величины х . Из-за наличия случайных ошибок отдельные значения х 1 , х 2 , х 3, х n неодинаковы, и в качестве наилучшего значения искомой величины выбирается среднее арифметическое , равное арифметической сумме всех измеренных значений, деленной на число измерений:

. (П.1)

где å - знак суммы, i - номер измерения, n - число измерений.

Итак, - значение, наиболее близкое к истинному. Истинного же значения никто не знает. Можно лишь рассчитать интервал Dх вблизи , в котором истинное значение может находиться с некоторой степенью вероятности р . Этот интервал называется доверительным интервалом . Вероятность, с которой истинное значение в него попадает, называется доверительной вероятностью, или коэффициентом надежности (так как знание доверительной вероятности позволяет оценить степь надежности полученного результата). При расчете доверительного интервала необходимая степень надежности задается заранее. Она определяется практическими потребностями (например, к деталям мотора самолета предъявляются более жесткие требования, чем к лодочному мотору). Очевидно, для получения большей надежности требуется увеличение числа измерений и их тщательности.

Благодаря тому, что случайные погрешности отдельных измерений подчиняются вероятностным закономерностям, методы математической статистики и теории вероятностей позволяют рассчитать среднюю квадратичную погрешность среднего арифметического значения сл. Запишем без доказательства формулу для расчета сл при малом числе измерений (n < 30).

Формулу называют формулой Стьюдента:

, (П.2)

где t n, p - коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности р .

Коэффициент Стьюдента находят по таблице, приведенной ниже, предварительно определив, исходя из практических потребностей (как было сказано выше), величины n и р .

При обработке результатов лабораторных работ достаточно провести 3-5 измерений, а доверительную вероятность принять равной0,68.

Но бывает так, что при многократных измерениях получаются одинаковые значения величины х . Например, 5 раз измерили диаметр проволоки и 5 раз получили одно и то же значение. Так вот, это вовсе не значит, что погрешности нет. Это значит только то, что случайная погрешность каждого измерения меньше точности прибора d, которую также называют приборной ,или инструментальной , погрешностью. Инструментальная погрешность прибора d определятся по классу точности прибора, указанному в его паспорте, либо указывается на самом приборе. А иногда принимается равной цене деления прибора (цена деления прибора - значение его самого маленького деления) либо половине цены деления (если на глаз приблизительно можно определить половину цены деления прибора).


Так как каждое из значений х i получено с погрешностью d, то полный доверительный интервал , или абсолютную погрешность измерения, рассчитывают по формуле:

. (П.3)

Заметим, что если в формуле (П.3) одна из величин хотя бы в 3 раза больше другой, то меньшей пренебрегают.

Абсолютная погрешность сама по себе не отражает качества проведенных измерений. Например, только по информации абсолютная погрешность равна 0,002 м² нельзя судить о том, сколь хорошо было проведено данное измерение. Представление о качестве проведенных измерений дает относительная погрешность e, равная отношению абсолютной погрешности к среднему значению измеряемой величины. Относительная погрешность показывает, какую долю составляет абсолютная погрешность от измеренного значения. Как правило, относительную погрешность выражают в процентах:

Рассмотрим пример. Пусть диаметр шара измеряется с помощью микрометра, инструментальная погрешность которого d = 0,01 мм. В результате трех измерений получились следующие значения диаметра:

d 1 = 2,42 мм, d 2 = 2,44 мм, d 3 = 2,48 мм.

По формуле (П.1) определяют среднее арифметическое значение диаметра шара

Затем по таблице коэффициентов Стьюдента находят, что для доверительной вероятности 0,68 при трех измерениях t n, p = 1,3. После чего по формуле (П.2) рассчитывают случайную погрешность измерения Dd сл

Так как полученная случайная погрешность всего в два раза превышает приборную погрешность, то при нахождении абсолютной погрешности измерения Dd по (П.3) следует учитывать и случайную погрешность, и погрешность прибора, т. е.

Мм » ±0,03 мм.

Погрешность округлили до сотых миллиметра, так как точность результата не может превышать точность измерительного прибора, которая в данном случае составляет 0,01 мм.

Итак, диаметр проволоки равен

мм.

Данная запись говорит о том, что истинное значение диаметра шара с вероятностью 68 % лежит в интервале (2,42 ¸ 2,48) мм.

Относительная погрешность e полученного значения согласно (П.4) составляет

%.

1. Как определять погрешности измерений.

Выполнение лабораторных работ связано с измерением различных физических величин и последующей обработкой их результатов.

Измерение - нахождение значения физической величины опытным путем с помощью средств измерений.

Прямое измерение - определение значения физической величины непосредственно средствами измерения.

Косвенное измерение - определение значения физической величины по формуле, связывающей ее с другими физическими величинами, определяемыми прямыми измерениями.

Введем следующие обозначения:

А, В, С, ... - физические величины.

А пр - приближенное значение физической величины, т. е. значение, полученное путем прямых или косвенных измерений.

ΔА - абсолютная погрешность измерения физической величины.

ε - относительная погрешность измерения физической величины, равная:

Δ И А - абсолютная инструментальная погрешность, определяемая конструкцией прибора (погрешность средств измерения; см. табл. 1).

Δ 0 А - абсолютная погрешность отсчета (получающаяся от недостаточно точного отсчета показаний средств измерения); она равна в большинстве случаев половине цены деления, при измерении времени - цене деления секундомера или часов.

Таблица 1

Абсолютные инструментальные погрешности средств измерений

Средства измерения Предел измерения Цена деления Абсолютная инструментальная погрешность
1 Линейка
ученическая до 50 см 1 мм ± 1 мм
чертежная до 50 см 1 мм ± 0,2 мм
инструментальная (стальная) 20 см 1 мм ± 0,1 мм
демонстрационная 100 см 1 см ± 0,5 см
2 Лента измерительная 150 см 0,5 см ± 0,5 см
3 Измерительный цилиндр до 250 мл 1 мл ± 1 мл
4 Штангенциркуль 150 мм 0,1 мм ± 0,05 мм
5 Микрометр 25 мм 0,01 мм ± 0,005 мм
6 Динамометр учебный 4 Н 0,1 Н ± 0,05 Н
7 Весы учебные 200 г - ± 0,01 г
8 Секундомер 0-30 мин 0,2 с ± 1 с за 30 мин
9 Барометр-анероид 720-780 мм рт. ст. 1 мм рт. ст. ± 3 мм рт. ст.
10 Термометр лабораторный 0-100 0 С 1 0 С ± 1 0 С
11 Амперметр школьный 2 А 0,1 А ± 0,05 А
12 Вольтметр школьный 6 В 0,2 В ± 0,15 В

Максимальная абсолютная погрешность прямых измерений складывается из абсолютной инструментальной погрешности и абсолютной погрешности отсчета при отсутствии других погрешностей:

Абсолютную погрешность измерения обычно округляют до одной значащей цифры (ΔА = 0,17 ≈ 0,2); числовое значение результата измерений округляют так, чтобы его последняя цифра оказалась в том же разряде, что и цифра погрешности (А = 10,332 ≈ 10,3).

Результаты повторных измерений физической величины А, проведенных при одних и тех же контролируемых условиях и при использовании достаточно чувствительных и точных (с малыми погрешностями) средств измерения, обычно отличаются друг от друга. В этом случае А пр находят как среднее арифметическое значение всех измерений, а погрешность ΔА (ее называют случайной погрешностью) определяют методами математической статистики.

В школьной лабораторной практике такие средства измерения практически не используются. Поэтому при выполнении лабораторных работ необходимо определять максимальные погрешности измерения физических величин. Для получения результата достаточно одного измерения.

Относительная погрешность косвенных измерений определяется так, как показано в таблице 2.

Таблица 2

Формулы для вычисления относительной погрешности косвенных измерений

Формула для физической величины Формула для относительной погрешности
1
2
3
4

Абсолютная погрешность косвенных измерений определяется по формуле ΔА = А пр ε (ε выражается десятичной дробью).

2. О классе точности электроизмерительных приборов.

Для определения абсолютной инструментальной погрешности прибора надо знать его класс точности. Класс точности γ пр измерительного прибора показывает, сколько процентов составляет абсолютная инструментальная погрешность Δ и А от всей шкалы прибора (A max):

Класс точности указывают на шкале прибора или в его паспорте (знак % при этом не пишут). Существуют следующие классы точности электроизмерительных приборов: 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4. Зная класс точности прибора (γ пр) и всю его шкалу (А mах), определяют абсолютную погрешность Δ и А измерения физической величины А этим прибором:

3. Как сравнивать результаты измерений.

1. Записать результаты измерений в виде двойных неравенств:

А 1np - ΔА 1 < А 1пр < А 1пр + ΔА 1 ,

А 2пр - ΔА 2 < А 2пр < А 2пр + ΔА 2 .

2. Сравнить полученные интервалы значений: если интервалы не перекрываются, то результаты неодинаковы; если перекрываются - одинаковы при данной относительной погрешности измерений.

4. Как оформлять отчет о проделанной работе.

  1. Лабораторная работа № ... .
  2. Наименование работы.
  3. Цель работы.
  4. Чертеж (если требуется).
  5. Формулы искомых величин и их погрешностей.
  6. Таблица результатов измерений и вычислений.
  7. Окончательный результат, вывод и пр. (согласно цели работы).

5. Как записывать результат измерения.

А = А пр ± ΔА
е = ...%.

При прямых измерениях

1. Пусть на вольтметре однократно измерены два напряжения U 1 = 10 В, U 2 = 200 В. Вольтметр имеет следующие характеристики: класс точности d кл т = 0,2, U max = 300 В.

Определим абсолютную и относительную погрешности этих измерений.

Так как оба измерения произведены на одном приборе, то DU 1 = DU 2 и вычисляются по формуле (В.4)

Согласно определению относительные погрешности U 1 и U 2 соответственно равны

ε 1 = 0,6 ∙ В / 10 В = 0,06 = 6 %,

ε 2 = 0,6 ∙ В / 200 В = 0,003 = 0,3 %.

Из приведенных результатов вычислений ε 1 и ε 2 видно, что ε 1 значительно больше ε 2 .

Отсюда вытекает правило: следует выбирать прибор с таким пределом измерений, чтобы показания были в последней трети шкалы.

2. Пусть некоторая величина измерена многократно, то есть произведено n отдельных измерений этой величины А х 1 , А х 2 ,..., А х 3 .

Тогда для вычисления абсолютной погрешности производят следующие операции:

1) по формуле (В.5) определяют среднее арифметическое значение А 0 измеряемой величины;

2) вычисляют сумму квадратов отклонений отдельных измерений от найденного среднего арифметического и по формуле (В.6) определяют среднюю квадратическую погрешность, которая и характеризует абсолютную погрешность единичного измерения при многократных прямых измерениях некоторой величины;

3) относительная погрешность ε вычисляется по формуле (В.2).

Вычисление абсолютной и относительной погрешности

При косвенном измерении

Вычисление погрешностей при косвенных измерениях – более сложная задача, так как в этом случае искомая величина является функцией других вспомогательных величин, измерение которых сопровождается появлением погрешностей. Обычно при измерениях, если не считать промахов, случайные погрешности оказываются весьма малыми по сравнению с измеряемой величиной. Они настолько малы, что вторые и более высокие степени погрешностей лежат за пределами точностей измерений и ими можно пренебречь. Из-за малости погрешностей для получения формулы погрешности
косвенно измеряемой величины применяют методы дифференциального исчисления. При косвенном измерении величины, когда непосредственно измеряются величины, связанные с искомой некоторой мaтематической зависимостью, удобнее вначале определить относительную погрешность и уже
через найденную относительную погрешность вычислять абсолютную погрешность измерения.

Дифференциальное исчисление дает наиболее простой способ определения относительной погрешности при косвенном измерении.

Пусть искомая величина А связана функциональной зависимостью с несколькими независимыми непосредственно измеряемыми величинами x 1 ,
x 2 , ..., x k , т. е.

A = f (x 1 , x 2 , ..., x k ).

Для определения относительной погрешности величины А берется натуральный логарифм от обеих частей равенства

ln A = ln f (x 1 , x 2 , ..., x k ).

Затем вычисляется дифференциал натурального логарифма функции
A = f (x 1 ,x 2 , ..., x k ),

dlnA = dlnf (x 1 , x 2 , ..., x k )

В полученном выражении производятся все возможные алгебраические преобразования и упрощения. После этого все символы дифференциалов d заменяются на символы погрешности D, причем отрицательные знаки перед дифференциалами независимых переменных заменяются положительными, т. е. берется наиболее неблагоприятный случай, когда все погрешности складываются. В этом случае вычисляется максимальная погрешность результата.

С учетом вышесказанного

но ε = D А / А

Данное выражение является формулой относительной погрешности величины А при косвенных измерениях, оно определяет относительную погрешность искомой величины, через относительные погрешности, измеряемых величин. Вычислив по формуле (В.11) относительную погрешность,
определяют абсолютную погрешность величины А как произведение относительной погрешности на рассчитанное значение А т. е.

DА = εА , (В.12)

где ε выражено безразмерным числом.

Итак, относительную и абсолютную погрешности косвенно измеряемой величины следует рассчитать в такой последовательности:

1) берется формула, по которой рассчитывается искомая величина (расчетная формула);

2) берется натуральный логарифм от обеих частей расчетной формулы;

3) вычисляется полный дифференциал натурального логарифма искомой величины;

4) в полученном выражении производятся все возможные алгебраические преобразования и упрощения;

5) символ дифференциалов d заменяется на символ погрешности D, при этом все отрицательные знаки перед дифференциалами независимых переменных заменяются на положительные (величина относительной погрешности будет максимальной) и получается формула относительной погрешности;

6) рассчитывается относительная погрешность измеряемой величины;

7) по рассчитанной относительной погрешности вычисляется абсолютная погрешность косвенного измерения по формуле (В.12).

Рассмотрим несколько примеров расчета относительной и абсолютной погрешностей при косвенном измерении.

1. Искомая величина А связана с непосредственно измеряемыми величинами х , у , z соотношением

где a и b – постоянные величины.

2. Возьмем натуральный логарифм от выражения (В.13)

3. Вычислим полный дифференциал натурального логарифма искомой величины А , то есть дифференцируем (В.13)

4. Производим преобразования. Учитывая, что dа = 0, так как а = const, cos у /sin y = ctg y , получаем:

5. Заменим символы дифференциалов символами погрешностей и знак «минус» перед дифференциалом на знак «плюс»

6. Рассчитываем относительную погрешность измеряемой величины.

7. По рассчитанной относительной погрешности вычисляется абсолютная погрешность косвенного измерения по формуле (В.12), т. е.

Определяется длина волны желтого цвета спектральной линии ртути при помощи дифракционной решетки (используя принятую последовательность вычисления относительной и абсолютной погрешностей для длины волны желтого цвета).

1. Длина волны желтого цвета в этом случае определяется по формуле:

где С – постоянная дифракционной решетки (косвенно измеряемая величина); φ ж – угол дифракции желтой линии в данном порядке спектра (непосредственно измеряемая величина); K ж – порядок спектра, в котором производилось наблюдение.

Постоянная дифракционной решетки вычисляется по формуле

где K з – порядок спектра зеленой линии; λ з – известная длина волны зеленого цвета (λ з – постоянная); φ з – угол дифракции зеленой линии в данном порядке спектра (непосредственно измеряемая величина).

Тогда с учетом выражения (В.15)

(В.16)

где K з, K ж – наблюдаемые, которые считаются постоянными; φ з, φ ж – являют-
ся непосредственно измеряемыми величинами.

Выражение (В.16) – расчетная формула длины волны желтого цвета, определяемой при помощи дифракционной решетки.

4. dK з = 0; dK ж = 0; dλ з = 0, так как K з, K ж и λ з – постоянные величины;

Тогда

5. (В.17)

где Dφ ж, Dφ з – абсолютные погрешности измерения угла дифракции желтой
и зеленой линий спектра.

6. Рассчитываем относительную погрешность длины волны желтого цвета.

7. Вычисляем абсолютную погрешность длины волны желтого цвета:

Dλ ж = ελ ж.

Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример : в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например , длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374. Получим число 0,0695, переведем в проценты и получим 6%. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10% и 0,1%. Для отрезка длиной в 10 см погрешность в 1см очень велика, это ошибка в 10%. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1%.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например , для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.