Упражнения        04.02.2024   

Каковы физические условия на луне. Физические условия на луне

Луна - единственный естественный спутник Земли. Это тело шарообразной формы диаметром 3475 км. Масса Луны всего в 81 раз меньше массы Земли. Средняя плотность Луны равна 0,6 плотности Земли, а ускорение свободного падения в 6 раз меньше земного, т. е. на лунной поверхности предметы весят в 6 раз меньше, чем на Земле. Солнечные сутки на Луне продолжаются синодический месяц (29,5 земных суток). На Луне нет воды в жидком виде и практически нет атмосферы. За лунный день, который длится около 15 земных суток, поверхность успевает нагреться до +130 °С, а ночью охладиться до -170 °С. При высоких температурах скорость газовых молекул превышает вторую космическую скорость для поверхности Луны, равную 2,38 км/с, поэтому газы, выделяющиеся из недр спутника Земли или образующиеся при падении метеорных тел, быстро покидают Луну. Без газовой атмосферы Луна подвержена воздействию всех видов электромагнитного излучения Солнца, а также ударам метеорных тел разного размера.

Невооруженным глазом на лунной поверхности различимы светлые и темные участки. На темные, относительно ровные области поверхности, названные «морями», приходится 16,9 % всей поверхности Луны. Более светлые гористые участки, так называемые «материки», занимают оставшуюся поверхность и характеризуются наличием горных хребтов, кольцевых гор, кратеров. Первую подробную лунную карту составил в 1647 г. польский астроном Ян Гевелий. С того времени до наших дней сохранились названия морей - Море Спокойствия, Море Кризисов и др. Названия горных хребтов, тянущихся обычно вдоль окраин морей, созвучны земным - Апеннины, Кавказ, Карпаты и др. Апеннины имеют максимальную высоту около 6 км, а Карпаты - лишь 2 км.

Самыми многочисленными образованиями на лунной поверхности являются кратеры. Их размеры колеблются от микроскопических до более 100 км в диаметре. Кратер состоит из кольцевого вала и внутренней равнины. У большинства «молодых» кратеров на дне возвышаются центральные горки. В полнолуние у «молодых» кратеров, имеющих метеоритное происхождение, можно видеть лучевые системы - светлые полосы, радиально отходящие от кратера и тянущиеся на сотни километров.

Удар крупного метеорита или небольшого астероида о поверхность Луны сопровождается взрывом. При этом происходит выброс лунного вещества под разными углами. Значительная его часть попадает в космос, однако некоторая доля падает обратно на ее поверхность. Из струй измельченного вещества формируются лучевые системы. Для наблюдателя лучи кажутся более светлыми потому, что они лучше отражают свет, чем плотное вещество того же состава.

Крупные и средние кратеры названы в честь выдающихся ученых: Птолемей, Архимед, Платон, Коперник, Тихов, Шмидт и др.

Космические исследования существенно углубили наши знания о Луне. В 1959 г. советским аппаратом «Луна-3» была впервые сфотографирована обратная, невидимая сторона Луны. В 1965 г. появилась первая полная карта Луны, составленная под научным руководством Ю.Н. Липского.

Американские астронавты Нил Армстронг и Эдвин Олдрин стали первыми людьми, ступившими на поверхность Луны 20 июля 1969 г. Астронавты, находясь на Луне, могли видеть на небе нашу Землю. Американские космические корабли серии «Аполлон» в течение последующих трех лет шесть раз доставляли в разные места Луны экспедиции (12 астронавтов занимались исследованиями в местах посадок, им удалось собрать более 360 кг лунных образцов). Лунные породы доставляли и советские автоматические станции «Луна».

Поверхностный слой естественного спутника Земли состоит из мелкообломочного материала - реголита и имеет толщину около 10 м. В состав лунного реголита входят также стеклянные сферические микрочастицы. Дробление лунных пород происходит в основном из-за микрометеоритной бомбардировки и резких перепадов температуры. Реголит обладает малой плотностью (верхний слой 1200 кг/м 3) и очень низкой теплопроводностью (в 20 раз меньше воздуха), поэтому уже на глубине около 1 м колебания температуры практически не ощутимы.

По химическому составу лунные породы очень близки базальтовым породам Земли. Породы лунных морей отличаются высоким содержанием оксидов железа и титана, материковые - высоким содержанием оксидов алюминия.

В последнее время космические станции обнаружили запасы водяного льда в полярных областях Луны. Поскольку угол наклона лунного экватора к эклиптике всего 1,5°, то дно даже неглубоких кратеров в полярных областях никогда не освещается солнечными лучами. При постоянной температуре -200 °С дно полярных кратеров покрывает смесь реголита со льдом. Источником возникновения и накопления лунных полярных льдов могут быть упавшие в эти области кометы, которые представляют собой ледяные тела.

Внутреннее строение Луны изучено по записям сотрясений от ударов метеоритов, которые фиксировались доставленными на Луну сейсмографами. Под слоем реголита располагается кора, толщина которой на видимой (обращенной к Земле) стороне составляет 60 км, а на обратной - 100 км. Под корой находится мантия, толщина которой около 1000 км. Зона глубже 1600 км напоминает земную мантию, имеет толщину 430 км и температуру около 1800 К. Последние исследования подтвердили, что в центре Луны существует металлическое ядро радиусом около 300 км, масса которого составляет около 3% от общей массы Луны.

Существует несколько гипотез образования Луны. По одной из самых популярных Луна образовалась вместе с Землей из одной планетезимали. Было предположение, что Земля могла разделиться на две части и что впадина Тихого океана - это «яма», оставшаяся после того, как Луна «вырвалась» из Земли.

Некоторые ученые полагают, что Луна образовалась путем объединения крошечных камешков, обращавшихся вокруг Земли 4,5 млрд лет назад. Накопление частиц под действием сил гравитации, действующих вблизи Земли, стало «уменьшенным» вариантом такого же процесса, который происходил в первичной солнечной туманности и привел к рождению планет.

Рассматривается и такой механизм образования Луны. Земля, прошедшая основные стадии дифференциации вещества, столкнулась с крупным небесным телом (размером с Марс). Косой удар разрушил только верхние слои земных недр. На околоземную орбиту было выброшено вещество земной коры и мантии, из которого путем слияния сформировался спутник Земли.

Параметры Луны смотрите в таблице.

Учебник для 10 класса

Физические условия на Луне и ее рельеф

§15.1. Физические условия на Луне

Луна - самое близкое к Земле небесное тело и потому изучена лучше всего Ближайшие к нам планеты примерно в 100 раз дальше, чем Луна. Луна меньше Земли по диаметру вчетверо, а по массе в 81 раз. Средняя ее плотность 3,3 10 кг/м 3 , т. е. меньше, чем у Земли. Вероятно, у Луны нет такого плотного ядра, какое есть у Земли.

Мы видим всегда только одно полушарие Луны, на котором никогда не заметно ни облаков, ни малейшей дымки, что служило одним из доказательств отсутствия на Луне водяных паров и атмосферы. Позднее это было подтверждено прямыми измерениями на поверхности Луны. Небо на Луне даже днем было бы черное, как в безвоздушном пространстве, но окружающая Луну разреженная пылевая оболочка немного рассеивает солнечный свет.

На Луне нет атмосферы, смягчающей палящие солнечные лучи, не пропускающей к поверхности опасные для живых организмов рентгеновское и корпускулярное излучения Солнца, уменьшающей отдачу энергии ночью в мировое пространство и защищающей от космических лучей и потоков микрометеоров. Нет там ни облаков, ни воды, ни туманов, ни радуги, ни зари с рассветом. Тени резкие и черные.

С помощью автоматических станций установлено, что непрерывные удары мелких метеоритов, дробя поверхность Луны, как бы обтачивают ее и сглаживают рельеф. Мелкие осколки не превращаются в пыль, а в условиях вакуума быстро спекаются в пористый шлако-подобный слой. Происходит молекулярное сцепление пыли в подобие пемзы. Такая структура лунной коры придает ей малую теплопроводность. В результате при сильных колебаниях температуры снаружи в недрах Луны даже на небольшой глубине температура сохраняется постоянной. Огромные перепады температуры лунной поверхности от дня к ночи объясняются не только отсутствием атмосферы, но и продолжительностью лунного дня и лунной ночи, которая соответствует двум нашим неделям. Температура в подсолнечной точке Луны равна +120°С, а в противоположной точке ночного полушария -170°С. Вот как изменяется температура в течение одного лунного дня!

Луна - самое близкое к Земле небесное тело и потому изучена лучше всего. Ближайшие к нам планеты примерно в 100 раз дальше, чем Луна. Луна меньше Земли по диаметру вчетверо, а по массе в 81 раз. Средняя ее плотность , т. е. меньше, чем у Земли. Вероятно, у Луны нет такого плотного ядра, какое есть у Земли.

Мы видим всегда только одно полушарие Луны, на котором никогда не заметно ни облаков, ни малейшей дымки, что служило одним из доказательств отсутствия на Луне водяных паров и атмосферы. Позднее это было подтверждено прямыми измерениями на поверхности Луны. Небо на Луне даже днем было бы черное, как в безвоздушном пространстве, но окружающая Луну разреженная пылевая оболочка немного рассеивает солнечный свет.

На Луне нет атмосферы, смягчающей палящие солнечные лучи, не пропускающей к поверхности опасные для живых организмов рентгеновское и корпускулярное излучения Солнца, уменьшающей отдачу энергии ночью в мировое пространство и защищающей от космических лучей и потоков микрометеоров. Нет там ни облаков, ни воды, ни туманов, ни радуги, ни зари с рассветом. Тени резкие и черные.

С помощью автоматических станций установлено, что непрерывные удары мелких метеоритов, дробя поверхность Луны, как бы обтачивают ее и сглаживают рельеф. Мелкие осколки не превращаются в пыль, а в условиях вакуума быстро спекаются в пористый шлакоподобный слой. Происходит молекулярное сцепление пыли в подобие пемзы. Такая структура лунной коры придает ей малую теплопроводность. В результате при сильных колебаниях температуры снаружи в недрах Луны даже на небольшой глубине температура сохраняется постоянной. Огромные перепады температуры лунной поверхности от дня к ночи объясняются не только отсутствием атмосферы, но и продолжительностью лунного дня и лунной ночи, которая соответствует двум нашим неделям. Температура в подсолнечной точке Луны равна +120 °С, а в противоположной точке ночного полушария - 170 °С. Вот как изменяется температура в течение одного лунного дня!

2. Рельеф Луны.

Уже со времен Галилея начали составлять карты видимого полушария Луны. Темные пятна на поверхности Луны были названы «морями» (рис. 47). Это низменности, в которых нет ни капли воды. Дно их темное и сравнительно ровное. Большую часть поверхности Луны занимают гористые, более светлые пространства. Есть несколько горных хребтов, названных, подобно земным, Альпами, Кавказом и т. д. Высота гор достигает 9 км. Но основной формой рельефа являются кратеры. Их кольцевые валы высотой до нескольких километров окружают большие круглые впадины диаметром до 200 км, например Клавий и Шиккард. Всем крупным кратерам даны названия в честь ученых. Так, на Луне есть кратеры Тихо, Коперник и др.

Рис. 47. Схематическая карта крупнейших деталей на обращенном к Земле полушарии Луны.

В полнолуние в южном полушарии хорошо видны в сильный бинокль кратер Тихо диаметром 60 км в виде яркого кольца и расходящиеся от него радиально светлые лучи. Их длина сравнима с радиусом Луны, и они тянутся, пересекая много других кратеров и темных впадин. Выяснилось, что лучи образованы скоплением множества мелких кратеров со светлыми стенами.

Лунный рельеф лучше изучать тогда, когда соответствующая местность лежит вблизи терминатора, т. е. границы дня и ночи на Луне. Тогда освещенные Солнцем сбоку малейшие неровности отбрасывают длинные тени и легко заметны. Очень интересно в течение часа проследить в телескоп за тем, как вблизи терминатора на ночной стороне загораются светлые точки - это вершины валов лунных кратеров. Постепенно из тьмы выплывает светлая подкова - часть кратерного вала, но дно кратера еще погружено в

Рис. 48. Схематическая карта обратной стороны Луны, невидимой с Земли.

полный мрак. Лучи Солнца, скользя все ниже, постепенно обрисовывают и весь кратер. При этом хорошо видно, что, чем меньше кратеры, тем их больше. Они часто расположены цепочками и даже «сидят» друг на друге. Позднейшие кратеры образовались на валах более старых. В центре кратера часто видна горка (рис. 49), в действительности это группа гор. Кратерные стены обрываются террасами круто внутрь. Дно кратеров лежит ниже окружающей местности. Рассмотрите внимательно вид внутренности вала и центральной горки кратера Коперник, сфотографированных искусственным спутником Луны сбоку (рис. 50). С Земли этот кратер виден прямо сверху и без таких подробностей. Вообще с Земли в наилучших условиях едва видны кратеры до 1 км в диаметре. Вся поверхность Луны изрыта мелкими кратерами - пологими углублениями - это результат ударов мелких метеоритов.

С Земли видно только одно полушарие Луны. В 1959 г. со-ветская космическая станция, пролетая мимо Луны, впервые сфотографировала невидимое с Земли полушарие Луны. Принципиально оно не отличается от видимого, но на нем меньше «морских» впадин (рис. 48). Теперь составлены подробные карты этого полушария на основании многочисленных фотографий Луны, выполненных с близкого расстояния автоматическими станциями, посылавшимися к Луне. Искусственно созданные аппараты неоднократно опускались на ее поверхность. В 1969 г. на поверхность Луны впервые опустился космический аппарат с двумя американскими космонавтами. К настоящему времени на Луне побывало несколько экспедиций космонавтов США, благополучно вернувшихся на Землю. Они ходили и даже ездили на специальном вездеходе по поверхности Луны, уста навливали и оставляли на ней разные аппараты, в частности сейсмографы для регистрации «лунотрясений», и привезли образцы лунного грунта. Образцы оказались очень сходными с земными горными породами, но у них обнаружили и ряд особенностей, свойственных лишь лунным минералам. Советские ученые получили пробы лунных пород из разных мест при помощи автоматов, которые по команде с Земли брали пробу грунта и возвращались с ней на Землю, Более того, на Луну посылались советские луноходы (автоматические самоходные лаборатории, рис. 51), выполнившие много научных измерений и анализов грунта и прошедшие по Луне значительные расстояния - несколько десятков километров. Даже в тех местах лунной поверхности, которые с Земли выглядят ровными, грунт изобилует воронками и зчасыпан камнями всевозможной величины. Луноход «шаг за шагом», управляемый с Земли по радио, передвигался с учетом характера местности, вид которой передавался

Цирк Альфонс, в котором наблюдалось выделение вулканических газов (снимок сделан автоматической станцией вблизи Луны).

(кликните для просмотра скана)

на Землю по телевидению. Это величайшее достижение советской науки и человечества важно не только как доказательство неограниченных возможностей человеческого разума и техники, но и как прямое исследование физических условий на другом небесном теле. Оно важно и тем, что подтверждает большинство выводов, которые астрономы делали лишь из анализа света Луны, приходящего к нам с расстояния 380 000 км.

Изучение лунного рельефа и его происхождения интересно и для геологии - Луна как бы музей древней истории ее коры, так как вода и ветер ее не разрушают. Но Луна - это не совсем мертвый мир. В 1958 г. советский астроном Н. А. Козырев заметил в кратере Альфонс выделение газов из лунных недр.

В формировании рельефа Луны, по-видимому, принимали участие и внутренние, и внешние силы. Роль тектонических и вулканических явлений несомненна, так как на Луне есть линии сброса, цепочки кратеров, огромная столовая гора со склонами такими же, как и у кратеров. Имеется сходство лунных кратеров с лавовыми озерами Гавайских островов. Менее крупные кратеры образовались от ударов больших метеоритов. На Земле есть также ряд кратеров, образованных при падении метеоритов. Что касается лунных «морей», то они, по-видимому, образованы проплавлениями лунной коры и излияниями лавы вулканов. Конечно, на Луне, как и на Земле, основные этапы горообразования происходили в далеком прошлом.

Многочисленные кратеры, обнаруженные на некоторых других телах планетной системы, например на Марсе и Меркурии, должны иметь такое же происхождение, как и лунные. Интенсивное кратерообразование, по-видимому, связано с малой силой тяжести на поверхности планет и с разреженностью их атмосферы, мало смягчающей бомбардировку метеоритами.

Советские космические станции установили отсутствие у Луны магнитного поля и поясов радиации и наличие на ней радиоактивных элементов.

Лунная поверхность безжизненна и пуста. Её особенностью является полное отсутствие атмосферных эффектов, которые наблюдаются на Земле. Ночь и день наступают мгновенно, как только появятся лучи Солнца.

Из-за отсутствия среды для распространения звуковых волн, на поверхности царит полная тишина.

Ось вращения Луны наклонена только на 1,5 0 от нормали до эклиптики, поэтому Луна не имеет никаких сезонов, изменений пор года. Солнечный свет всегда почти горизонтален в лунных полюсах, что делает эти местности постоянно холодными и темными.

Лунная поверхность изменяется под воздействием деятельности человека, метеоритных бомбардировок, облучений частицами с высокой энергией (рентгеновские и космические лучи). Эти факторы не оказывают заметного воздействия, но за астрономические времена сильно “вспахивают” поверхностный слой - реголит.

При ударе о поверхность Луны метеорной частицы происходит миниатюрный взрыв и во все стороны разбрасываются частицы грунта и метеоритного вещества. Эти частицы в большинстве покидают гравитационное поле Луны.

Диапазон суточного колебания температуры составляет 250 0 С. Колеблется от 101 0 до -153 0 . Но нагревание и охлаждение пород происходит медленно. Быстрое изменение температуры происходит только при лунных затмениях. Было измерено, что температура меняется от 71 до - 79 С за час.

Радиоастрономическими методами была измерена температура низлежащих слоёв, она оказалась постоянной на глубине 1 м. и равна -50 С у экватора. Значит верхний слой является хорошим теплоизолятором.

Анализ лунных пород, доставленных на Землю, показал, что они никогда не подвергались воздействию воды.

Средняя плотность Луны - 3,3 г/см 3 .

Период обращения Луны вокруг оси равен периоду её обращения вокруг Земли, поэтому она наблюдается с Земли только одной стороной. Обратная сторона Луны была впервые сфотографирована в 1959 году.

Светлые участки лунной поверхности называются материками и занимают 60% её поверхности. Это неровные гористые районы. Остальные 40% поверхности - моря. Это впадины, заполненные тёмной лавой и пылью. Они были названы в 17 веке.

Материки пересечены горными хребтами, расположенными вдоль побережий морей. Наибольшая высота лунных гор достигает 9 км.

Лунные кратеры имеют в большинстве метеоритное происхождение. Вулканических мало, но есть и комбинированные. Самые крупные лунные кратеры имеют диаметр до 100 км.

На Луне наблюдались яркие вспышки, что может быть связано с извержениями вулканов.

У Луны почти нет жидкого ядра, об этом свидетельствует отсутствие магнитного поля. Магнитометры показывают, что магнитное поле Луны не превышает 1/10 000 земного.

Атмосфера:

Хотя Луна окружена вакуумом более совершенным, чем тот, который возможно создать в земных лабораторных условиях, её атмосфера обширна и представляет высокий научный интерес.

В течение двух-недельного лунного дня, атомы и молекулы, выбитые рядом процессов с лунной поверхности на баллистические траектории, ионизируются солнечным излучением и затем управляются электромагнитными эффектами как плазма.

Положение Луны на орбите определяет поведение атмосферы.

Размеры атмосферных явлений были измерены рядом приборов, помещенных на лунной поверхности астронавтами Аполлона. Но анализ данных был затруднён из-за того, что естественная лунная атмосфера является настолько незначительной, что загрязнение от исходящих с Аполлона газов существенно влияло на результаты.

Основные газы, представленные на Луне - неон, водород, гелий, аргон.

В дополнение к поверхностным газам обнаружено небольшое количество пыли, циркулирующей на высоте до нескольких метров над поверхностью.

Число атомов и молекул в единице объёма атмосферы составляет менее триллионной доли числа частиц, содержащихся в единичном объёме земной атмосферы на уровне моря. Сила гравитации Луны мала, чтобы удержать молекулы у поверхности.

Любое тело, обладающее скоростью большей 2,4 км/с выйдет из-под гравитационного контроля Луны. Эта скорость немного больше средней скорости молекул водорода при обычной температуре. Диссипация водорода происходит почти мгновенно. Диссипация кислорода и азота происходит медленнее, т.к. эти молекулы тяжелее. За астрономически небольшие промежутки времени Луна способна потерять всю свою атмосферу, если она когда либо у неё была.

Сейчас атмосфера пополняется из межпланетного пространства.

М.Мендилло и Д. Бомгарднер (Бостонский ун-т) после анализа результатов наблюдений полного лунного затмения 29.11.1993 пришли к выводу, что лунная атмосфера в 2 раза протяжённее (равна 10 диаметрам Луны), чем считали ранее.

Она поддерживается не ударами о лунный грунт микрометеоритов и эле-ментарных частиц солнечного ветра (протонов и электронов), а воздействием на него световыми и тепловыми фотонами солнечного излучения.

Основные компоненты - атомы и ионы натрия и калия, выбитые из лунного грунта. Атмосфера очень разреженна, однако атомы натрия легко возбуждаются и сильно излучают, поэтому их легко обнаружить. (Nature 5.10.1995).

Происхождение: По преобладающим современным теориям Луна образовалась вместе с Землёй из одной планетезимали. Учёные считают, что первоначально Луна находилась очень близко к Земле, а Дж. Дарвин писал, что Луна была когда-то в контакте с Землёй и период обращения двух тел составлял около 4 часов. Но это предположение кажется маловероятным. Многие считают, что Луна образовалась на расстоянии, значительно меньшем половины современного. При этом приливные волны на Земле должны были бы достигать 1 км.

Существуют и другие теории. Найдено новое доказательство гипотезы, что Луна образовалась от столкновения какого-то тела с Землёй.

По данным спутника Луны "Клементина", обработанным в Гавайском ун-

те (США), была составлена карта процентного содержания железа на поверхности Луны. Оно может меняться от 0% в горах до 14% на дне морей. Если бы Луна имела такой же минералогический состав, как Земля, то железа было бы значительно больше. Значит она вряд ли образовалась из одного протопланетного облака с Землёй.

Громадные области на обратной стороне Луны вовсе не содержат железа, но покрыты анортозитом, породой, богатой алюминием. Чистый анортозит редко встречается на Земле.

Влияние на Землю: Американцы Р. Боллинг и Р. Сервени изучили данные о

глобальном температурном распределении, полученные со спутников между 1797 и 1994 гг. Из данных следует, что Земля бывает тёплой, когда Луна полная, и холодной - когда Луна в новолунии. Своим светом в полнолуние Луна подогревает Землю на 0.02 0 С. Даже такие изменения температуры могут влиять на климат Земли. (Astronomy Now, май 1995).

Успешное осуществление мягкой посадки на лунную поверхность космической станции «Луна-9» - новый этап в изучении природы Луны, начало прямых экспериментов на ее поверхности.

Земля - Луна - единственная в своем роде «двойная планета» солнечной системы. Фундаментальная проблема происхождения Луны рассматривалась многими исследователями. Результаты оказались довольно противоречивыми. Однако не представляет сомнения качественный вывод, сделанный еще Дж. Дарвиным в его классическом исследовании приливной истории системы Земля - Луна. Дж. Дарвин считал, что приливное трение, обусловленное главным образом мелководными морями, должно непрерывно замедлять вращение Земли и вместе с тем, увеличивая момент количества движения Луны, расширять ее орбиту. Следовательно, Земля в прошлом вращалась скорее, а Луна находилась к Земле ближе. Заметим, что «вековой эффект» приливного трения при меньших расстояниях был существенно больше, чем теперь.

Постепенное удаление Луны от Земли подтверждается непосредственными наблюдениями. Известно, что и в настоящее время продолжительность суток увеличивается. Далее, исследования структуры кораллов показали, что в раннем палеозое сутки составляли около 20 часов и число дней в году было больше.

Для решения проблемы происхождения Луны нужно было бы рассчитать, на каком расстоянии от Земли находилась Луна в самом начале формирования солнечной системы. Как показывает изучение метеоритного (и, следовательно, астероидального) вещества, солнечная система образовалась около 4,5 млрд лет назад.

Однако сделать достаточно уверенный расчет приливной эволюции системы Земля - Луна в настоящее время еще невозможно. Во-первых, нельзя сказать, как происходило постепенное накопление океанских бассейнов и как изменялось приливное трение. Во-вторых, сейчас установлено, что в приливных явлениях значительная роль принадлежит всему веществу Земли.

Дж. Дарвин, приняв максимально возможное отклонение приливного «горба» от линии между центрами Земли и Луны, нашел, что Луна должна была находиться в непосредственном соседстве с Землей всего 57 млн лет назад, что, конечно, не имеет ничего общего с действительностью. Не упоминая о некоторых противоречивых результатах, укажем, что на основании совокупности ряда исследований, включая недавние расчеты Е. Л. Рускол, можно считать, что Луна в прошлом двигалась по орбите с меньшим эксцентриситетом, т. е. более приближающейся к круговой, с меньшим наклоном к плоскости земного экватора, и наименьшее расстояние Луны от Земли составляло несколько радиусов Земли. Весьма вероятно, что на наименьшем расстоянии Луна находилась несколько миллиардов лет назад - в самом начале истории нашей планеты.

Эти выводы, вследствие неопределенности исходных данных, носят более или менее качественный характер, но они указывают, что Луна никогда не захватывалась Землей, а образовалась совместно с ней в едином процессе космической эволюции. Подобный процесс образования двойных и даже кратных тел - очень распространенное явление в космосе, и наше Солнце, сформировавшееся вследствие малого вращательного момента как одиночное тело, довольно редкое исключение. Роль Луны в процессе образования системы Земля - Луна заключалась именно в том, что еще до окончательного выделения Земли из первоначальной протопланетной массы на долю Луны пришлась наибольшая часть вращательного момента. Это способствовало формированию Земли в виде единого и достаточно устойчивого тела. Другие планеты были в иных условиях. Например, Венера - планета примерно той же массы, что и Земля, но с совершенно ничтожным вращательным моментом (Венера вращается вокруг оси с периодом около 250 суток и притом в обратном направлении), всегда находилась в устойчивом состоянии и потому не должна была «обзаводиться» спутником.

С вопросом происхождения Луны связана также ее термическая история, определяющая в значительной степени физические условия на лунной поверхности. Расчеты термической истории Луны, проводившиеся детально, главным образом в СССР и США,
имеют довольно условный характер вследствие неопределенности начальных данных. Обычно предполагается, что состав Земли и Луны близок к каменным метеоритам - хон-дритам, в которых много долгоживущих радиоактивных элементов (калия-40, тория и двух изотопов урана). При равномерном распределении радиоактивных элементов внутри массы планетного тела выделяющаяся при их распаде энергия почти полностью поглощается, постепенно повышая температуру недр. Для расчета нужно задать наиболее вероятные значения теплопроводности, плотности и удельной теплоемкости на всех расстояниях от центра планеты и учесть, при каких нагревах может происходить полное или частичное расплавление вещества. В зависимости от тех или иных предпосылок разные авторы получали, что Луна на всем протяжении своей истории или оставалась твердой, или же, напротив, была расплавленной вплоть до 0,8 радиуса, считая от центра.

Центральные части Луны могли нагреться примерно до 1300° К (Г. Юри) или до 2000° К (Б. Ю. Левин, С. В. Маева). Меньший нагрев мог произойти, если радиоактивные элементы скапливались преимущественно в поверхностных слоях.

Однако эти расчеты все же не решают вопроса, может ли иметь место более или менее значительный расплав вещества Луны. Представляется сомнительным, являются ли хондриты наиболее характерным материалом состава Луны и планет. В последнее время первичным веществом принято считать углистые хондриты. Далее, помимо распада долгоживущих радиоактивных элементов могут быть и другие источники нагрева, а именно обычный гравитационный нагрев при быстром сжатии образующегося космического тела. Нужно учесть и выделение химической энергии при образовании сложных молекулярных соединений, входящих в состав Луны. До сих пор неясна роль коротко-живущих радиоактивных изотопов, которые, по последним данным, должны были играть существенную роль при формировании асте-роидального, а следовательно, и планетного вещества. Наконец, в первую эпоху своего существования, когда Луна находилась сравнительно близко к Земле, значительное влияние должна была иметь энергия приливного трения. Таким образом, проблема термической истории Луны не может быть разрешена чисто теоретически. Необходимо сопоставление разнообразного наблюдательного материала.

Первые определения лунной температуры, основанные на измерении инфракрасной радиации, проводились еще в 1868 г. лордом Россом, а затем более детально, начиная с 1927 г., Э. Петтитом и С. Никольсоном. В среднем температура подсолнечной точки оказалась около 390° К, а в антисолнечной точке довольно уверенно получилось 120° К. Максимальное значение температуры, которое приходилось измерять, составляет 405° К. Итак, за время лунных суток амплитуда температурных колебаний составляет около 280°. Это одна из важнейших величин, характеризующих условия на Луне. С восходом Солнца температура поверхности быстро повышается, проходит довольно пологий максимум и затем сравнительно медленно достигает минимального значения. Интересно, что резкие скачки температуры (свыше 200°) наблюдаются даже во время полных лунных затмений, которые имеют сравнительно небольшую продолжительность. Все это означает, что солнечная радиация нагревает только наиболее поверхностные слои лунного покрова, что теплопроводность лунных пород ничтожна и, как показывают расчеты, должна быть примерно в тысячу раз меньше теплопроводности типичных земных минералов.

Важно подчеркнуть, что распределение температуры зависит от отражательной способности данного участка поверхности Луны. Так, кратеры с более высоким альбедо нагреваются в течение дня несколько меньше окружающей области. Вообще гористые районы нагреваются меньше, чем более темные моря.

Интересные результаты недавно получены радиометодами. Например, В. С. Троицкий измерял интенсивность лунного радиоизлучения на длине волны от 3 до 70 см. Эффективная глубина испускания излучения примерно в 20 раз больше соответствующей длины волны. Следовательно, длине волны в 30 см соответствует глубина испускающего слоя в 6 м. Поэтому исследование длинноволнового радиоизлучения позволяет проникнуть во внутренние слои Луны и получить сведения об их термических свойствах. Комбинируя эти данные с измерениями теплопроводности, можно сделать оценку потока энергии из внутренних слоев Луны.
Проведя многочисленные измерения и применяя в качестве стандарта излучение «искусственной Луны» - диска, поставленного на расстоянии нескольких сотен метров от приемника излучения, В. С. Троицкий получил, что средняя температура Луны быстро увеличивается до глубины примерно 6 м, а затем возрастает значительно медленнее. Общий тепловой поток от Луны оказался примерно таким же, как и от земной поверхности, хотя масса вещества, соответствующая единице поверхности Луны, в пять раз меньше. Выделение теплоты внутренними областями Луны на единицу массы по данным В. С. Троицкого в 4-5 раз больше, чем это имеет место для Земли.

Казалось бы, это подтверждает гипотезу, которой в частности придерживается Б. Ю. Левин, о значительном расплавлении лунного вещества. Однако можно привести доводы в пользу того, что в основном Луна должна быть совершенно твердой.

В самом деле, как известно, данные о термической истории и внутреннем строении Марса приводят к выводу о том, что у этой планеты нет жидкого ядра значительных размеров. Марс имеет массу в 9 раз меньшую земной. У него отсутствует ощутимое магнитное поле. Магнитное поле Луны также очень незначительное, а ее масса в 81 раз меньше массы Земли. Поскольку тела меньшей массы охлаждаются быстрее, естественно ожидать, что Луна в основном твердая.

С другой стороны, форма Луны значительно отличается от фигуры равновесия жидкой массы, соответствующей современному расстоянию от Земли при сравнительно небольшом приливном воздействии. Вытянутость лунной фигуры по отношению к Земле составляет 1 км, в то время как в условиях равновесия она может быть не больше 60 м. Отсюда как будто следует, что Луна должна была почти полностью стать твердой еще на сравнительно небольшом расстоянии от Земли (соответствующем периоду обращения в 6,8 суток) и после этого продолжала сохранять свою форму.

Заметим также, что несмотря на более высокую температуру в центральных областях Луна могла все же сохранить твердую структуру (вследствие значительного давления) и лишь вблизи поверхности температура плавления могла понизиться настолько, чтобы обеспечить возможность хотя бы частичного расплава.

Для решения вопроса о внутреннем строении Луны необходимо провести ее зондирование сейсмическими методами. Пока же приходится ограничиваться анализом рельефа лунной поверхности и его изменениями в прежние эпохи.

Самый беглый обзор лунной поверхности несомненно доказывает, что лунные моря возникли в результате обширного расплавления, при котором оказались частично затопленными более древние кольцевые горы. Например, хорошо сохранилась та часть обширного залива Радуги, которая примыкает к гористой области. Другая половина залива, расположенная на поверхности Моря Дождей, полностью исчезла.

Можно довольно уверенно проследить последовательную смену различных эпох в формировании лунного рельефа. На поверхности Луны заметны более древние кольцевые горы, расплавления, образовавшие лунные моря, сравнительно недавние детали рельефа, кратеры с центральными горками, купола и т. д. Последовательность развития лунных форм детально изучалась А. В. Ха-баковым.

Какова же причина изменений рельефа Луны? Г. Юри рассматривал образование Моря Дождей как результат наклонного удара о Луну большого астероида, но это маловероятное, хотя и возможное, событие не может быть основной причиной. Появление лунных расплавлений относится к определенной эпохе эволюции Луны и по каким-то причинам было связано лишь с полусферой, обращенной к Земле. Действительно, на обратной стороне Луны моря почти совершенно отсутствуют. Возможно, удары крупных метеоритных тел лишь способствовали проявлению местной активности.

Если считать, что образование лунного рельефа обусловлено внутренней активностью, то оно должно сопровождаться попутным выделением газов и водяных паров подобно тому, как это происходило и в слабой мере происходит теперь на Земле. Однако сравнительно слабое притяжение Луны не смогло удержать газы у ее поверхности и они довольно быстро улетучились в пространство.

Теоретические расчеты показывают, что при максимальной температуре поверхности (400° К) водород удерживается Луной лишь около двадцати минут. Кислород и водяные пары, которые быстро разлагаются под действием ультрафиолетовой солнечной радиации, могут находиться у лунной поверхности примерно полтора года. Углекислота удерживается несколько сот миллионов лет, а наиболее тяжелые газы - криптон и особенно ксенон - практически на протяжении всего существования Луны. Некоторые тяжелые газы, например углекислота, должны накапливаться, если на Луне поддерживается хотя бы минимальная вулканическая деятельность. Другие - ксенон, криптон-могли бы выделиться в процессе радиоактивного распада. Однако самые тщательные исследования Луны различными методами не привели к обнаружению какой-либо газообразной оболочки. Наиболее чувствительный метод, основанный на наблюдении покрытий Луной точечных радиоисточников, показал, что верхний предел атмосферного давления на Луне должен быть в 10 000 млрд. раз меньше, чем на Земле на уровне моря, т. е. практически Луна совершенно лишена атмосферы.

Выделение газов из центральной горки кратера Альфонса наблюдал Н. А. Козырев 3 ноября 1958 г. и 23 октября 1959 г. Удивительно, что это оказался не водяной пар или какое-либо соединение кислорода, а молекулярный углерод Сг, который обычно входит в состав голов комет, но никогда не выделяется на Земле. Отсутствие каких-либо газов, которые могли бы удерживаться достаточное время у лунной поверхности, можно объяснить воздействием солнечного ветра, сдувающего в межпланетное пространство малейшие следы лунной атмосферы.

Заслуживают особого внимания топографические свойства Луны. Как известно, на Луне преобладают кольцевые образования. Это - обширные кольцевые горы диаметром свыше 200 км (например, Клавий), обычные кратеры (часто с центральными горками) размером в несколько десятков километров и мелкие лунки поперечником всего лишь в метры.

Даже лунные моря, размером в тысячи километров, если онп изолированы и не накладываются на другие подобные образования. имеют весьма правильные круговые очертания, например Море Кризисов и ряд других. Кроме того, па Луне встречаются полигональные формы, шестиугольные валы, расположенные на более или менее ровном грунте. Они впервые были отмечены известным селенологом П. Пюизе и особенно ясно представлены около Северного полюса. Этот же исследователь обнаружил в Море Спокойствия «купола» - небольшие круглые выпуклости. В дальнейшем много куполов было открыто и в других местах Луны, главным образом на поверхности морей, где их легче заметить. В верхней части купола обычно имеется отверстие вроде вулканического жерла. Кроме того, внутри морей и больших кратеров много бороздок, обычно располагающихся вдоль валов и напоминающих трещины. Наиболее резко выраженная система таких трещин хорошо видна в центре лунного диска около кратера Триснеккера. Там же заметна резкая бороздка. Она, проходя через небольшой кратер Гигинус, меняет направление. Эти бороздки в некоторых районах Луны образуют целые системы парал-
лельных линий, связанных с преимущественным направлением кратеров и их валов. Наконец, характерная особенность Луны - радиальные системы светлых лучей, расходящихся от отдельных кратеров с центральными горками. Они тянутся на расстояния (например, от кратера Тихо) тысячи километров и проходят, не меняя направления, через гористые и низменные области.

При детальном ознакомлении с лунной топографией обращают на себя внимание* несомненные изменения, происходившие на Луне в течение долгих периодов. Выделяются очень старые кольцевые горы, валы которых почти исчезли, как будто погрузившись в грунт. Таков, например, реликтовый цирк Стадий диаметром 60 км. Относительный возразличных деталей на Луне и ряда земных минералов - гранитов, базальтов, песчаников, а также различных конгломератов, установила резкое отличие лунных пород от земных. Оказалось, что лунные породы характеризуются малым диапазоном цвета и отражательной способности, в то время как земные минералы, особенно в горных сухих пустынях, при отсутствии пылевого покрова отличаются самой разнообразной окраской (достаточно указать на замечательную по своей расцветке горную долину, ведущую от Кении вдоль Нила до Красного моря).

Лабораторные эксперименты свидетельствуют о том, что крайняя однородность лунной поверхности может быть объяснена облучением некоторых минералов высокочастотной радиацией. Например, Б. Гапке нашел, что минералы, богатые слабо окисленными металлами - железом, медью и др., довольно быстро темнеют при облучении протонами с энергией около 5 кэв, что обусловливается образованием свободных ионов металла около поверхности.

Другая удивительная особенность лунного поверхностного слоя, отражающего солнечные лучи, заключается в характере индикатрисы отражения*. При освещении лунной поверхности больше всего света отражается в направлении, обратном падающему лучу (Напомним, что идеально матовая поверхность отражает свет по всем направлениям пропорционально косинусу утла падения.) При таком законе отражения каждый элемент лунной поверхности кажется особенно ярким, когда падающий луч совпадает с направлением отраженного, т. е. во время полнолуния. Яркость элемента поверхности почти не зависит от его наклона к лучу зрения наблюдателя. Вследствие этого весь лунный диск представляется практически одинаково ярким как в центре, так и на краях, что создает впечатление какой-то плоской тарелки, а не сферического тела. По мере уменьшения угла фазы, т. е. по мере приближения к моменту полнолуния, яркость Луны быстро возрастает и проходит через резкий максимум.

Детальное рассмотрение этих особенностей показало, что поверхность Луны в масштабе, сравнимом с длиной световых волн, должна отличаться сложной разветвленной
структурой, такой, что при ее освещении один элемент может затенять другой. Наименьший эффект получается, очевидно, когда падающий луч совпадает с отраженным. Наоборот, поверхность соседнего с нами Марса - единственной планеты, у которой предполагаются какие-то формы жизни, отличается полной гладкостью, почти совпадающей с гладкостью абсолютно матовых поверхностей. Создается, таким образом, на первый взгляд парадоксальное положение. Необитаемая Луна отличается микроструктурой поверхности, имитирующей растительность, а Марс, где имеется атмосфера и некоторые признаки водяных паров, оказывается просто песчаной пустыней. Аналогичные особенности в микроструктуре получаются и при рассмотрении поляризационных свойств поверхности Луны. Интересно, что даже наибольшая степень поляризации для всего лунного диска не превосходит 8% (при угле фазы в 90°) и лишь для морей поднимается до 20%. Сравнение с земным веществом показывает, что наблюдаемые поляризационные особенности достигаются при ветвистой или сотовидной структуре поверхности.

Причина подобных особенностей структуры лунной поверхности заключается в продолжительных (миллиарды лет!) разнообразных космических влияниях. Луна испытывает постоянные удары микрометеоритов, число которых быстро возрастает с уменьшением массы. Они разрушают ее поверхностный слой. Кроме того, Луна подвергается облучению солнечным ветром, состоящим преимущественно из протонов - положительно заряженных ядер водорода, движущихся со скоростью тысячи километров в секунду. Далее, как это можно судить по веществу метеоритов, странствующих самостоятельно в межпланетном пространстве в течение сотен миллионов лет, известную эрозию лунной поверхности вызывают первичные космические лучи. Еще одна причина эрозии - резкие перепады температуры, доходящие в течение лунных суток почти до 300°, которым Луна подвергалась за время своего существования по крайней мере 50 млрд. раз.

Облучение космическими лучами и солнечным ветром должно привести к накоплению заметного положительного заряда веществом лунной поверхности. Ранее Ж. Грейнджер оценивал его в 5 в, но теперь после расчетов С. Зингера принимают величину заряда даже в 20-25 в. Наличие заряда может понижать теплопроводность наружного слоя Луны.

Оптические особенности лунной поверхности проявляются только в масштабе тысячных долей миллиметра, так как размеры отражающих зерен поверхностного слоя Луны в среднем около 5 мк. В радиодиапазоне сантиметровых и метровых волн условия отражения оказываются совсем иными. При увеличении длины волны отражательные свойства поверхности Луны приближаются к свойствам зеркально отражающей сферы. Детальное обследование лунной поверхности при помощи радаров, начавшееся в 1946 г., проводилось на разных обсерваториях, в том числе в Серпухове под Москвой на Окской станции ФИАН СССР. Было показано, что на длине волны около 10 см примерно 50%
потока радиоволн отражается от центральной части Луны (размером 0,1 ее радиуса), а остальная энергия рассеивается приблизительно по закону Ламберта. При увеличении длины волны эта диффузная составляющая постепенно уменьшается, и Луна все больше приобретает свойства идеального отражателя. Таким образом, теперь можно судить о размерах неровностей лунной поверхности, оказавшихся в полном согласии со снимками, которые передала автоматическая станция «Луна-9». Кроме того, на основании измерения отражательной способности, равной в среднем 0,06, получено, что величина диэлектрической постоянной (примерно 2,72) соответствует сухим песчаным почвам Земли.

Сделаем несколько замечаний о люминесценции, обнаруженной около кратеров Тихо, Аристарх и в некоторых других областях Луны. Некоторые лунные породы при облучении их солнечной ультрафиолетовой радиацией, гамма-лучами и протонами высоких энергий, переизлучают энергию в области видимого спектра. Впервые на возможность такого явления указал еще Ф. Линк в 1946 г. Десять лет спустя Ж. Дюбуа и одновременно Н. А. Козырев дали способ количественного определения, основанный на измерении контуров отдельных линий солнечного спектра, которые при наложении на них люминесцирующего свечения становятся менее глубокими. Люминесценция сосредоточивается лишь в отдельных эмиссионных полосах: 390, 420, 430, 440 ммк, и яркость их по сравнению с отраженным солнечным спектром, по оценкам Дюбуа, повышается на 10-20%. Согласно М. И. Миртовой, в области люминесценции кратера Аристарха имеется полоса 450-550 ммк. Эти явления указывают, что на поверхности Луны встречаются сложные минералы, в которые входят элементы с большим атомным весом. На Земле минерал шеелит (CaWCU) - окисленное соединение кальция и вольфрама люминесцирует с такой же частотой испускания.

Луна, как видно из особенностей ее рельефа, прошла долгую и сложную эволюцию. Однако она и теперь не мертвое тело, подверженное лишь внешним воздействиям. Напротив, в отдельных частях Луны происходят изменения, правда довольно редкие, но все же заметные. Достаточно указать на исчезновение в 1866 г. кратера Линнея диаметром 10 км, расположенного в средней части Моря Ясности. Вместо него Ьсталось только глубокое отверстие диаметром около 2 км, а валы прежнего кратера, по-видимому заполнившегося массой расплавленного вещества, теперь едва только намечаются. В 1891 г. там же были замечены некоторые изменения степени белесоватости во время полного лунного затмения.

Более мелкие изменения происходят и в других местах. Так, во внутренней части кратера Альфонс подозревалось уже давно некоторое помутнение, а затем там спектроскопически обнаружили выход газов. Довольно загадочные события происходят, по-видимому, на дне цирка Платон, расположенного у северной оконечности огромного Моря Дождей. Предполагают, что видимые там светлые полосы, а также как будто и строение рельефа несколько меняются. А. В. Марков и другие наблюдатели констатировали там изменения цветности и отражательной способности. Причина этого еще неизвестна.

Некоторые наблюдатели отмечали также изменение отражательной способности радиальных зон восточного вала кратера Аристарх.
В проблеме происхождения и эволюции лунного рельефа, а также в наблюдаемых свойствах поверхности Луны еще много неясного. Однако за последнее десятилетие кромо наземных телескопических исследований стали проводиться эксперименты вблизи Луны и на ее поверхности. Полеты советских лунников и американских космических аппаратов позволяют уточнить современные представления о Луне. Эти эксперименты имеют неоценимое значение также для познания нашей Земли и других планет солнечной системы.